4.7 Article

Characterizing the in vitro hepatic biotransformation of the flame retardant BDE 99 by common carp

期刊

AQUATIC TOXICOLOGY
卷 97, 期 2, 页码 142-150

出版社

ELSEVIER
DOI: 10.1016/j.aquatox.2009.12.013

关键词

Biotransformation; Debromination; PBDEs; Metabolism; Carp

资金

  1. National Institute of Environmental Health Sciences [R01ES016099]

向作者/读者索取更多资源

Polybrominated diphenyl ethers (PBDEs) are a class of flame retardant chemicals known to biomagnify in aquatic foodwebs. However, significant biotransformation of some congeners via reductive dehalogenation has been observed during in vivo and in vitro laboratory exposures, particularly in fish models. Little information is available on the enzyme systems responsible for catalyzing this metabolic pathway in fish. This study was undertaken to characterize the biotransformation of one primary BDE congener, 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), using in vitro techniques. Hepatic sub-cellular fractions were first prepared from individual adult common carp (Cyprinus carpio) to examine metabolism in both microsomal and cytosolic sub-cellular fractions. Debromination rates (i.e. BDE-99 biotransformation to BDE-47) were generally higher in the microsomal fraction than in the cytosolic fraction, and some intra-species variability was observed. Further experiments were conducted to determine the biotransformation kinetics and the influence of specific co-factors, inhibitors and competitive substrates on metabolism using pooled carp liver microsomes. The apparent K-m and V-max values were 19.4 mu M and 1120 pmoles h(-1) mg protein(-1), respectively. Iodoacetate (IaC) and the two thyroid hormones, reverse triodothyronine (rT3) and thyroxine (T4), significantly inhibited the debromination of BDE-99 in microsomal sub-cellular fractions with IC50 values of 2.2 mu M, 0.83 mu M, and >1.0 mu M, respectively. These results support our hypothesis that deiodinase enzymes may be catalyzing the metabolism of PBDEs in fish liver tissues. Further studies are needed to evaluate metabolic activity in other species and tissues that contain these enzymes. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据