4.7 Article

Impact of glyphosate and benzo[a]pyrene on the tolerance of mosquito larvae to chemical insecticides. Role of detoxification genes in response to xenobiotics

期刊

AQUATIC TOXICOLOGY
卷 93, 期 1, 页码 61-69

出版社

ELSEVIER
DOI: 10.1016/j.aquatox.2009.03.005

关键词

Mosquitoes; Aedes aegypti; Induction; Resistance; Insecticides; Xenobiotics; Detoxification; Cytochrome P450 monooxygenases; Glutathione S-transferases; Esterases; Oxidative stress

向作者/读者索取更多资源

The effect of exposure of Aedes aegypti larvae for 72 h to sub-lethal concentrations of the herbicide glyphosate and the polycyclic aromatic hydrocarbon benzo[a]pyrene on their subsequent tolerance to the chemical insecticides imidacloprid, permethrin and propoxur, detoxification enzyme activities and transcription of detoxification genes was investigated. Bioassays revealed a significant increase in larval tolerance to imidacloprid and permethrin following exposure to benzo[a]pyrene and glyphosate. Larval tolerance to propoxur increased moderately after exposure to benzo[a]pyrene while a minor increased tolerance was observed after exposure to glyphosate. Cytochrome P450 monooxygenases activities were strongly induced in larvae exposed to benzo[a]pyrene and moderately induced in larvae exposed to imidacloprid and glyphosate. Larval glutathione S-transferases activities were strongly induced after exposure to propoxur and moderately induced after exposure to benzo[a]pyrene and glyphosate. Larval esterase activities were considerably induced after exposure to propoxur but only slightly induced by other xenobiotics. Microarray screening of 290 detoxification genes following exposure to each xenobiotic with the DNA microarray Aedes Detox Chip identified multiple detoxification and red/ox genes induced by xenobiotics and insecticides. Further transcription studies using real-time quantitative RT-PCR confirmed the induction of multiple P450 genes, 1 carboxy/cholinelesterase gene and 2 red/ox genes by insecticides and xenobiotics. Overall, this study reveals the potential of benzo[a]pyrene and glyphosate to affect the tolerance of mosquito larvae to chemical insecticides, possibly through the cross-induction of particular genes encoding detoxification enzymes. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据