4.6 Article

On the origin of the toughness of mineralized tissue: microcracking or crack bridging?

期刊

BONE
卷 34, 期 5, 页码 790-798

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.bone.2004.02.001

关键词

bone; fracture; toughening; crack bridging; microcracking

资金

  1. NIDCR NIH HHS [5R01 DE015633] Funding Source: Medline

向作者/读者索取更多资源

Two major mechanisms that could potentially be responsible for toughening in mineralized tissues, such as bone and dentin, have been identified-microcracking and crack bridging. While evidence has been reported for both mechanisms, there has been no consensus thus far on which mechanism plays the dominant role in toughening these materials. In the present study, we seek to present definitive experimental evidence supporting crack bridging, rather than microcracking, as the most significant mechanism of toughening in cortical bone and dentin. In vitro fracture toughness experiments were conducted to measure the variation of the fracture resistance with crack extension [resistance-curve (R-curve) behavior] for both materials with special attention paid to changes in the sample compliance. Because these two toughening mechanisms induce opposite effects on the sample compliance, such experiments allow for the definitive determination of the dominant toughening mechanism, which in the present study was found to be crack bridging for microstructurally large crack sizes. The results of this work are of relevance from the perspective of developing a micromechanistic framework for understanding fracture behavior of mineralized tissue and in predicting failure in vivo. (C) 2004 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据