4.7 Article

Biotransformation of pentachlorophenol by Chinese chive and a recombinant derivative of its rhizosphere-competent microorganism, Pseudomonas gladioli M-2196

期刊

SOIL BIOLOGY & BIOCHEMISTRY
卷 36, 期 5, 页码 787-795

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2004.01.006

关键词

pentachlorophenol; rhizosphere; Pseudomonas gladioli M-2196; Chinese chive; bioremediation; phytoremediation; tetrachlorocatechol

向作者/读者索取更多资源

The use of plants or microorganisms to detoxify contaminated soil or groundwater is a potentially cost-effective alternative to traditional remediation technologies. This study investigated the effects of a rhizosphere microbe on the biotransformation of pentachlorophenol (PCP). Chinese chive (Allium tuberosum Rottler) and its rhizosphere-competent bacterium, Pseudomonas gladioli M-2196, were used as a plant-bacterium pair. The genes encoding PCP-degrading enzymes from Sphingobium chlorophenolicum ATCC39723 were introduced into the chromosome of P. gladioli M-2196. The resultant transformants were able to degrade PCP almost completely in liquid medium within 4 d in culture. PCP degradation experiments showed that the amount of PCP in soil (3.3 mug g(-1)) planted with the P. gladioli transformant (T-9) and Chinese chive decreased by 40% as compared with untreated soil (control) by day 28. Strain T-9, which was used in the PCP degradation experiments. retained the ability to colonize the Chinese chive rhizosphere after 28 d. Tetrachlorocatechol (TCC) was detected as a metabolite of PCP in Chinese chive extract. The amount of PCP in soil treated only with Chinese chive decreased by 30% as compared with the control, but the total amount of PCP plus TCC detected in the plant was less than 10% of the amount of PCP removed from soil. This might be due to the enhancement of a soil microflora population capable of degrading PCP by root exudates from Chinese chive. Therefore, Chinese chive itself, in addition to the rhizosphere-competent bacterium, seemed to play an important role in reducing the PCP level in the soil. (C) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据