4.3 Article

Environmental enrichment results in cortical and subcortical changes in levels of synaptophysin and PSD-95 proteins

期刊

NEUROBIOLOGY OF LEARNING AND MEMORY
卷 81, 期 3, 页码 200-210

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.nlm.2004.02.002

关键词

cortex; hippocampus; hypothalamus synapse; synaptic plasticity; thalamus

向作者/读者索取更多资源

Experience-dependent plasticity is thought to involve selective change in pre-existing brain circuits, involving synaptic plasticity. One model for looking at experience-dependent plasticity is environmental enrichment (EE), where animals are exposed to a complex novel environment. Previous studies using electron microscopy showed that EE resulted in synaptic plasticity in the visual cortex and hippocampus. However, the areas in the brain that have been examined following EE have been limited. The present study quantified potential synaptic plasticity throughout the brains of C57BL/6 mice using an enzyme-linked immunosorbent assay (ELISA) for two synaptic proteins, synaptophysin and PSD-95. EE resulted in increased synaptophysin and PSD-95 levels through major brain regions, including anterior and posterior areas of the forebrain, hippocampus, thalamus, and hypothalamus. However, no changes in synaptophysin were detected in the cerebellum. These results demonstrate that EE results in an increase in levels of both pre- and post-synaptic proteins in multiple regions of the brain, and it is possible that such changes represent the underlying synaptic plasticity occurring in EE. (C) 2004 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据