4.4 Article

UV irradiation of natural organic matter (NOM): impact on organic carbon and bacteria

期刊

AQUATIC SCIENCES
卷 74, 期 3, 页码 443-454

出版社

SPRINGER BASEL AG
DOI: 10.1007/s00027-011-0239-y

关键词

Humic matter; Bacteria; High-pressure size-exclusion chromatography (HPSEC); UVC; Denaturing gradient gel electrophoresis (DGGE); Sequencing

资金

  1. German Science Foundation, DFG [GR 1540/11-1/2]
  2. [PA 1655/1-1]

向作者/读者索取更多资源

UV-induced transformation of dissolved organic matter (DOC) is often accompanied by reduction of molecular weight and aromaticity and an increase of low-molecular weight (LMW) matter that can be utilized as a substrate by heterotrophic bacteria. Moreover, the generation of reactive transients and mineralization of DOC occurs. For a better understanding of the modification that starts after irradiation and to distinguish between possible chemical and biological modifications, we selected different natural organic matter (NOM) from Norway and Germany. The aqueous solutions were treated by UV irradiation and divided into two aliquot samples. NaN3 anti-bacterial treatment was applied to one sample, and high-pressure size-exclusion chromatography (HPSEC) analysis was used for both. In all samples, we found typical modifications of NOM after UV irradiation. Incubation (> 7 days) of UV-irradiated NOM samples resulted in lower levels of LMW matter and increased aromaticity. Parallel to these changes of carbon fractions, an increase in bacterial cell numbers was observed. Addition of NaN3 to NOM, however, inhibited the reduction of LMW matter, indicating that microbial activity accounted for the observed changes in NOM. Analysis of the bacterial community composition by denaturing gradient gel electrophoresis (DGGE) of the amplified 16S rRNA genes revealed that bacterial communities of non-irradiated and UV-irradiated NOM were different and that UV selected for specific members of alpha-proteobacteria, beta-proteobacteria, and Bacteriodetes. Our results imply that after UV-irradiation of NOM, specific bacterial members are well adapted to low pH, high LMW DOC concentrations, and oxidative stress, and therefore thrive well on UV-irradiated humic matter.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据