4.2 Article

Effect of ocean acidification on microbial diversity and on microbe-driven biogeochemistry and ecosystem functioning

期刊

AQUATIC MICROBIAL ECOLOGY
卷 61, 期 3, 页码 291-305

出版社

INTER-RESEARCH
DOI: 10.3354/ame01446

关键词

Ocean acidification; Microbial diversity; Microbe; Bacteria; Phytoplankton; Viruses; Biogeochemistry; Meta-analysis

资金

  1. European Community [211384]
  2. ANR of the French Research Ministry
  3. Institut Polaire Francais Paul Emile Victor (IPEV)

向作者/读者索取更多资源

The ocean absorbs about 25% of anthropogenic CO2 emissions, which alters its chemistry. Among the changes of the carbonate system are an increase in the partial pressure of CO2 (pCO(2)) and a decline of pH; hence, the whole process is often referred to as 'ocean acidification'. Many microbial processes can be affected either directly or indirectly via a cascade of effects through the response of non-microbial groups and/or through changes in seawater chemistry. We briefly review the current understanding of the impact of ocean acidification on microbial diversity and processes, and highlight the gaps that need to be addressed in future research. The focus is on Bacteria, Archaea, viruses and protistan grazers but also includes total primary production of phytoplankton as well as species composition of eukaryotic phytoplankton. Some species and communities exhibit increased primary production at elevated pCO(2). In contrast to their heterocystous counterparts, nitrogen fixation by non-heterocystous cyanobacteria is stimulated by elevated pCO(2). The experimental data on the response of prokaryotic production to ocean acidification are not consistent. Very few other microbial processes have been investigated at environmentally relevant pH levels. The potential for microbes to adapt to ocean acidification, at either the species level by genetic change or at the community level through the replacement of sensitive species or groups by non-or less sensitive ones, is completely unknown. Consequently, the impact of ocean acidification on keystone species and microbial diversity needs to be elucidated. Most experiments used a short-term perturbation approach by using cultured organisms; few were conducted in mesocosms and none in situ. There is likely a lot to be learned from observations in areas naturally enriched with CO2, such as vents, upwelling and near-shore areas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据