3.8 Article

Involvement of glial cells in rhythmic size changes in neurons of the housefly's visual system

期刊

JOURNAL OF NEUROBIOLOGY
卷 59, 期 2, 页码 205-215

出版社

WILEY
DOI: 10.1002/neu.10307

关键词

circadian rhythms; plasticity; gliotoxins; gap junctions; Musca domestica

向作者/读者索取更多资源

In the housefly's first optic neuropile, or lamina, the axons of two classes of monopolar cell interneurons, L1 and L2, exhibit a daily rhythm of size changes: swelling during the day, and shrinking by night. At least for the L2 cells this rhythm is circadian. Moreover, epithelial glial cells that enwrap each lamina cartridge, its monopolar cell axons, and their surrounding crown of input photoreceptor terminals also change size, but in the opposite direction to the changes in L1 and L2-swelling by night and shrinking by day. The rhythmic changes in glia indicate the possible involvement of these cells in the lamina's circadian system. To examine their role in regulating the rhythmic changes of L1 and L2's axon sizes we have injected three chemicals into the haemolymph of the fly's head: fluorocitrate (FL) and iodoacetate (IAA), which affect the metabolism of glial cells, and octanol (OC), which closes gap junction channels. All chemicals exerted an effect on L1 and L2, which depended on the time of injection, the drug concentration, and the postinjection times at which we examined the fly's brains. Moreover, day/night changes in the axon sizes of L1 and L2 were increased in FL- and IAA-treated flies, indicating that glial cells may normally inhibit these changes by regulating the sizes of L1 and L2's axons during the day and night. In turn, lack of a day/night rhythm in L1 and L2 after OC injections shows that the rhythm's persistence depends on communication between the lamina cells through gap junction channels. (C) 2004 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据