4.7 Article

Biofilm structure and function and possible implications for riverine DOC dynamics

期刊

MICROBIAL ECOLOGY
卷 47, 期 4, 页码 316-328

出版社

SPRINGER
DOI: 10.1007/s00248-003-2019-2

关键词

-

向作者/读者索取更多资源

Biofilms are major sites of carbon cycling in streams and rivers. Here we elucidate the relationship between biofilm structure and function and river DOC dynamics. Metabolism (extracellular enzymatic activity) and structure (algae, bacteria, C/N content) of light-grown (in an open channel) and dark-grown (in a dark pipe) biofilms were studied over a year, and variations in dissolved organic carbon (DOC) and biodegradable DOC (BDOC) were also recorded. A laboratory experiment on C-14-glucose uptake and DOC dynamics was also performed by incubating natural biofilms in microcosms. On the basis of our field (annual DOC budget) and laboratory results, we conclude that light-grown biofilm is, on annual average, a net DOC consumer. This biofilm showed a high monthly variability in DOC uptake/release rates, but, on average, the annual uptake rate was greater than that of the dark-grown biofilm. The higher algal biomass and greater structure of the light-grown biofilm may enhance the development of the bacterial community (bacterial biomass and activity) and microbial heterotrophic activity. In addition, the light-grown biofilm may promote abiotic adsorption because of the development of a polysaccharide matrix. In contrast, the dark-grown biofilm is highly dependent on the amount and quality of organic matter that enters the system and is more efficient in the uptake of labile molecules (higher C-14-glucose uptake rate per mgC). The positive relationships between the extracellular enzymatic activity of biofilm and DOC and BDOC content in flowing water indicate that biofilm metabolism contributes to DOC dynamics in fluvial systems. Our results show that short-term fluvial DOC dynamics is mainly due to the use and recycling of the more labile molecules. At the river ecosystem level, the potential surface area for biofilm formation and the quantity and quality of available organic carbon might determine the effects of biofilm function on DOC dynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据