4.4 Article

Ion condensation and signal transduction

期刊

BIOESSAYS
卷 26, 期 5, 页码 549-557

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/bies.20019

关键词

-

向作者/读者索取更多资源

Many abiotic and other signals are transduced in eukaryotic cells by changes in the level of free calcium via pumps, channels and stores. We suggest here that ion condensation should also be taken into account. Calcium, like other counterions, is condensed onto linear polymers at a critical value of the charge density. Such condensation resembles a phase transition and has a topological basis in that it is promoted by linear as opposed to spherical assemblies of charges. Condensed counterions are delocalised and can diffuse in the so-called near region along the polymers. It is generally admitted that cytoskeletal filaments, proteins colocalised with these filaments, protein filaments distinct from cytoskeletal filaments, and filamentous assemblies of other macromolecules, constitute an intracellular macromolecular network. Here we draw attention to the fact that this network has physicochemical characteristics that enable counterion condensation. We then propose a model in which the feedback relationships between the condensation/decondensation of calcium and the activation of calcium-dependent kinases and phosphatases control the charge density of the filaments of the intracellular macromolecular network. We show how condensation might help mediate free levels of calcium both locally and globally. In this model, calcium condensation/decondensation on the macromolecular network creates coherent patterns of protein phosphorylation that integrate signals. This leads us to hypothesize that the process of ion condensation operates in signal transduction, that it can have an integrative role and that the macromolecular network serves as an integrative receptor. (C) 2004 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据