4.7 Article

Planet-disk symbiosis

期刊

ASTROPHYSICAL JOURNAL
卷 606, 期 1, 页码 L77-L80

出版社

UNIV CHICAGO PRESS
DOI: 10.1086/421080

关键词

planetary systems : formation; planetary systems : protoplanetary disks

向作者/读者索取更多资源

Planets form in disks around young stars. Interactions with these disks cause them to migrate and thus affect their final orbital periods. We suggest that the connection between planets and disks may be deeper and involve a symbiotic evolution. By contributing to the outward transport of angular momentum, planets promote disk accretion. Here we demonstrate that planets sufficiently massive to open gaps could be the primary agents driving disk accretion. Those having masses below the gap opening threshold drift inward more rapidly than the disk material and can only play a minor role in its accretion. An even more intimate symbiosis involving gap opening planets may result if they acquire most of their mass prior to gap formation. Given a small initial eccentricity, just a fraction of a percent, the orbital eccentricity of a massive planet may grow rapidly once a mass in excess of the planet's mass has been repelled to form a gap around the planet's orbit. Then, as the planet's radial excursions approach the gap's width, subsequent eccentricity growth slows so that the planet's orbit continues to be confined within the gap.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据