4.2 Article

Discontinuous Galerkin finite-element method for transcritical two-dimensional shallow water flows

期刊

JOURNAL OF HYDRAULIC ENGINEERING
卷 130, 期 5, 页码 412-421

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)0733-9429(2004)130:5(412)

关键词

finite element method; transient flow; shallow water; open channel flow; equations of motion

向作者/读者索取更多资源

A total variation diminishing Runge Kutta discontinuous Galerkin finite-element method for two-dimensional depth-averaged shallow water equations has been developed. The scheme is well suited to handle complicated geometries and requires a simple treatment of boundary conditions and source terms to obtain high-order accuracy. The explicit time integration, together with the use of orthogonal shape functions, makes the method for the investigated flows computationally as efficient as comparable finite-volume schemes. For smooth parts of the solution, the scheme is second order for linear elements and third order for quadratic shape functions both in time and space. Shocks are usually captured within only two elements. Several steady transcritical and transient flows are investigated to confirm the accuracy and convergence of the scheme. The results show excellent agreement with analytical solutions. For investigating a flume experiment of supercritical open-channel flow, the method allows very good decoupling of the numerical and mathematical model, resulting in a nearly grid-independent solution. The simulation of an actual dam break shows the applicability of the scheme to nontrivial bathymetry and wave propagation on a dry bed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据