4.6 Article

Rotation and accretion of very low mass objects in the σ Ori cluster

期刊

ASTRONOMY & ASTROPHYSICS
卷 419, 期 1, 页码 249-267

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20034022

关键词

techniques : photometric; stars : low-mass, brown dwarfs; stars : rotation; stars : formation; stars : activity; stars : magnetic fields

向作者/读者索取更多资源

We report on two photometric monitoring campaigns of Very Low Mass (VLM) objects in the young open cluster around sigma Orionis. Our targets were pre-selected with multi-filter photometry in a field of 0.36 sqdeg. For 23 of these objects, spanning a mass range from 0.03 to 0.7 M-circle dot, we detect periodic variability. Of these, 16 exhibit low-level variability, with amplitudes of less than 0.2 mag in the I-band, which is mostly well-approximated by a sine wave. These periodicities are probably caused by photospheric spots co-rotating with the objects. In contrast, the remaining variable targets show high-level variability with amplitudes ranging from 0.25 to 1.1 mag, consisting of a periodic light variation onto which short-term fluctuations are superimposed. This variability pattern is very similar to the photometric behaviour of solar-mass, classical T Tauri stars. Low-resolution spectra of a few of these objects reveal strong Ha and Ca-triplet emission, indicative of ongoing accretion processes. This suggests that 5-7% of our targets still possess a circumstellar disk. In combination with previous results for younger objects, this translates into a disk lifetime of 3-4 Myr, significantly shorter than for solar mass stars. The highly variable objects rotate on average slower than the low-amplitude variables, which is expected in terms of a disk-locking scenario. There is a trend towards faster rotation with decreasing mass, which might be caused by shortening of the disk lifetimes or attenuation of magnetic fields.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据