4.7 Article

Coordination polymers of tetra(4-carboxyphenyl)porphyrins sustained by tetrahedral zinc ion linkers

期刊

CRYSTAL GROWTH & DESIGN
卷 4, 期 3, 页码 633-638

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cg0342009

关键词

-

向作者/读者索取更多资源

Reactions between the free base tetra(4-carboxyphenyl)porphyrin and the corresponding platinum or palladium metalloporphyrin derivatives with zinc acetate dihydrate under solvothermal conditions in a basic environment (in the presence of pyridine and ammonium hydroxide) yielded extended supramolecular networks. These polymeric arrays consist of fully deprotonated porphyrin carboxylate units interconnected to each other by Zn(H2O)(2)(2+) auxiliaries. The zinc ion linkers adapt a tetrahedral coordination environment, imparting to the polymeric network an open three-dimensional architecture, wherein each zinc binds to two adjacent porphyrin units and two water ligands, while every porphyrin entity is linked to four different metal centers. In a reaction involving the free base macrocycle, the zinc ions were inserted into the porphyrin core as well, forming a five-coordinate entity with pyridine as an axial ligand. The solid state syntheses yielded either one-dimensional ladder type coordination polymers that pair in an interlocking manner or three-dimensional diamondoid arrangements with interpenetrating polymeric networks. Both types of frameworks are further interlinked to each other by weak hydrogen bonds from the zinc-bound water ligands of one array to the carboxylate functions of another. The previously reported porphyrin-based polymer tessellated by Zn2+ linkers that coordinate at a given binding site to four (rather than two) porphyrin units is also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据