4.4 Article

Similarity of mammalian body size across the taxonomic hierarchy and across space and time

期刊

AMERICAN NATURALIST
卷 163, 期 5, 页码 672-691

出版社

UNIV CHICAGO PRESS
DOI: 10.1086/382898

关键词

heritability; macroecology; evolution; Cenozoic; niche differentiation

向作者/读者索取更多资源

Although it is commonly assumed that closely related animals are similar in body size, the degree of similarity has not been examined across the taxonomic hierarchy. Moreover, little is known about the variation or consistency of body size patterns across geographic space or evolutionary time. Here, we draw from a data set of terrestrial, nonvolant mammals to quantify and compare patterns across the body size spectrum, the taxonomic hierarchy, continental space, and evolutionary time. We employ a variety of statistical techniques including sib-sib regression, phylogenetic autocorrelation, and nested ANOVA. We find an extremely high resemblance ( heritability) of size among congeneric species for mammals over similar to 18 g; the result is consistent across the size spectrum. However, there is no significant relationship among the body sizes of congeneric species for mammals under similar to 18 g. We suspect that life-history and ecological parameters are so tightly constrained by allometry at diminutive size that animals can only adapt to novel ecological conditions by modifying body size. The overall distributions of size for each continental fauna and for the most diverse orders are quantitatively similar for North America, South America, and Africa, despite virtually no overlap in species composition. Differences in ordinal composition appear to account for quantitative differences between continents. For most mammalian orders, body size is highly conserved, although there is extensive overlap at all levels of the taxonomic hierarchy. The body size distribution for terrestrial mammals apparently was established early in the Tertiary, and it has remained remarkably constant over the past 50 Ma and across the major continents. Lineages have diversified in size to exploit environmental opportunities but only within limits set by allometric, ecological, and evolutionary constraints.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据