4.6 Article Proceedings Paper

Fault classification and fault signature production for rolling element bearings in electric machines

期刊

IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS
卷 40, 期 3, 页码 735-739

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIA.2004.827454

关键词

bearings (mechanical); condition monitoring; fault diagnosis; vibration

向作者/读者索取更多资源

Most condition monitoring techniques for rolling element bearings are designed to detect the four characteristic fault frequencies. This has lead to the common practice of categorizing bearing faults according to fault location (i.e., inner race, outer race, ball, or cage fault). While the ability to detect the four characteristic fault frequencies is necessary, this approach neglects another important class of faults that arise in many industrial settings. This research introduces the notion of categorizing bearing faults as either single-point defects or generalized roughness. These classes separate bearing faults according to the fault signatures that are produced rather than by the physical location of the fault. Specifically, single-point defects produce the four predictable characteristic fault frequencies while faults categorized as generalized roughness produce unpredictable broadband changes in the machine vibration and stator current. Experimental results are provided from bearings failed in situ via a shaft current. These results illustrate the unpredictable and broadband nature of the effects produced by generalized roughness bearing faults. This issue is significant because a successful bearing condition monitoring scheme must be able to reliably detect both classes of faults.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据