4.7 Review

Dihydropyrimidine dehydrogenase and the efficacy and toxicity of 5-fluorouracil

期刊

EUROPEAN JOURNAL OF CANCER
卷 40, 期 7, 页码 939-950

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ejca.2003.12.004

关键词

chemotherapy; dihydropyrimidine dehydrogenase; DPYD; fluorouracil; mutations; pharmacokinetics; pharmacogenetics; pharmacogenomics; polymorphisms

类别

向作者/读者索取更多资源

The identification of genetic factors associated with either responsiveness or resistance to 5-fluorouracil (5-FU) chemotherapy, as well as genetic factors predisposing patients to the development of severe 5-FU-associated toxicity, is increasingly being recognised as an important field of study. Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of 5-fluorouracil (5-FU). Although the role of tumoral levels as a prognostic factor for clinical responsiviness has not been firmly established, there is ample evidence that a deficiency of DPD is associated with severe toxicity after the administration of 5-FU. Patients with a partial DPD deficiency have an increased risk of developing grade IV neutropenia. In addition, the onset of toxicity occurred twice as fast compared with patients with a normal DPD activity. To date, 39 different mutations and polymorphisms have been identified in DPYD. The IVS14 + 1G > A mutation proved to be the most common one and was detected in 24-28% of all patients suffering from severe 5-FU toxicity. Thus, a deficiency of DPD appears to be an important pharmacogenetic syndrome. (C) 2003 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据