4.4 Article

LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation

期刊

JOURNAL OF BACTERIOLOGY
卷 186, 期 9, 页码 2682-2691

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.186.9.2682-2691.2004

关键词

-

资金

  1. NIDCR NIH HHS [R03 DE015501, R01 DE013239, DE 15501, DE 12236, DE 13239] Funding Source: Medline

向作者/读者索取更多资源

LuxS-mediated quorum sensing has recently been shown to regulate important physiologic functions and virulence in a variety of bacteria. In this study, the role of luxS of Streptococcus mutans in the regulation of traits crucial to pathogenesis was investigated. Reporter gene fusions showed that inactivation of luxS resulted in a down-regulation of fructanase, a demonstrated virulence determinant, by more than 50%. The LuxS-deficient strain (TW26) showed increased sensitivity to acid killing but could still undergo acid adaptation. Northern hybridization revealed that the expression of RecA, SmnA (AP endonuclease), and Nth (endonuclease) were down-regulated in TW26, especially in early-exponential-phase cells. Other down-regulated genes included ffh (a signal recognition particle subunit) and brpA (biofilm regulatory protein A). Interestingly, the luxS mutant showed an increase in survival rate in the presence of hydrogen peroxide (58.8 mM). The luxS mutant formed less biofilm on hydroxylapatite disks, especially when grown in biofilm medium with sucrose, and the mutant biofilms appeared loose and hive-like, whereas the biofilms of the wild type were smooth and confluent. The mutant phenotypes were complemented by exposure to supernatants from wild-type cultures. Two loci, smu486 and smu487, were identified and predicted to encode a histidine kinase and a response regulator. The phenotypes of the smu486 smu487 mutant were, in almost all cases, similar to those of the luxS mutant, although our results suggest that this is not due to AI-2 signal transduction via Smu486 and Smu487. This study demonstrates that luxS-dependent signaling plays critical roles in modulating key virulence properties of S. mutans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据