4.7 Article

Attraction of spiral waves by localized inhomogeneities with small-world connections in excitable media

期刊

PHYSICAL REVIEW E
卷 69, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.69.056223

关键词

-

向作者/读者索取更多资源

Trapping and untrapping of spiral tips in a two-dimensional homogeneous excitable medium with local small-world connections are studied by numerical simulation. In a homogeneous medium which can be simulated with a lattice of regular neighborhood connections, the spiral wave is in the meandering regime. When changing the topology of a small region from regular connections to small-world connections, the tip of the spiral waves is attracted by the small-world region, where the average path length declines with the introduction of long distant connections. The trapped phenomenon also occurs in regular lattices where the diffusion coefficient of the small region is increased. The above results can be explained by the eikonal equation, the Luther equation, and the relation between the core radius and the diffusion coefficient.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据