4.7 Article

Morphology and surface area of emulsion-derived (PolyHIPE) solid foams prepared with oil-phase soluble porogenic solvents: Span 80 as surfactant

期刊

MACROMOLECULES
卷 37, 期 9, 页码 3188-3201

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma0359436

关键词

-

向作者/读者索取更多资源

Poly(divinylbenzene) emulsion-derived (PolyHIPE) solid foams prepared with porogens (toluene, chlorobenzene, (2-chloroethyl)benzene, 1,2-dichlorobenzene, and 1-chloro-3-phenylpropane) in the oil phase have morphologies and surface areas that are strongly influenced by the nature of the porogen. For the case where the surfactant employed is Span 80, we show that the solid foam structure depends on (i) the ability of the solvent to swell the growing network, (ii) the solvent polarity, and (iii) the ability of the solvent to adsorb at the emulsion interface. In particular, relatively polar solvents that are able to transport water through the emulsion continuous phase (Ostwald ripening) are shown to produce much lower surface areas than analogous resins prepared by homogeneous solution polymerization of divinylbenzene in the presence of the solvent in question alone. The influence of Ostwald ripening is further suggested by the observation that surface area decreases with increasing emulsion aqueous phase content for relatively polar solvents whereas little variation in surface area with aqueous phase content is observed for more hydrophobic solvents. All PolyHIPEs prepared were characterized by SEM, TEM, N-2 sorption analysis, and mercury intrusion porosimetry. The relative merits of TEM and mercury intrusion porosimetry as techniques for the reliable characterization of the solid foams are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据