4.7 Article

Transepithelial transport of chlorogenic acid, caffeic acid, and their colonic metabolites in intestinal Caco-2 cell monolayers

期刊

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
卷 52, 期 9, 页码 2518-2526

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jf035407c

关键词

chlorogenic acid; caffeic acid; monocarboxylic acid transporter; colonic metabolite; Caco-2

向作者/读者索取更多资源

Both chlorogenic and caffeic acids exhibited nonsaturable transport in Caco-2 cells, whereas caffeic acid also showed proton-coupled polarized absorption. Thus, the absorption efficiency of caffeic acid was greater than that of chlorogenic acid. Polarized transport of caffeic acid was inhibited by substrates of MCT such as benzoic and acetic acids. Almost all of the apically loaded chlorogenic and caffeic acid was retained on the apical side, and the transepithelial flux was inversely correlated with the paracellular permeability of Caco-2 cells. These results indicate that transport was mainly via paracellular diffusion, although caffeic acid was absorbed to a lesser extent by the monocarboxylic acid transporter (MCT). Furthermore, m-coumaric acid and 3-(m-hydroxyphenyl)propionic acid, the main metabolites of chlorogenic and caffeic acid by colonic microflora, competitively inhibited the transport of fluorescein, a known substrate of MCT. This suggests that their absorption could also be mediated by MCT. These findings have exemplified the physiological importance of MCT-mediated absorption in both phenolic acids per se and their colonic metabolites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据