4.5 Article

Quantification of morphological differences in boutons from different afferent populations to the nucleus accumbens

期刊

BRAIN RESEARCH
卷 1007, 期 1-2, 页码 167-177

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.brainres.2004.02.018

关键词

electron microscopy; prefrontal cortex; basolateral amygdala; central medial thalamus; ventral subiculum

向作者/读者索取更多资源

The nucleus accumbens (Acb) receives convergent glutamatergic inputs from the prefrontal cortex (PFC), central thalamus, basolateral amygdala and the ventral subiculum of the hippocampus. The principal neurons of the nucleus accumbens are modulated by specific sets of convergent afferent inputs, the local circuit neurons also receive a substantial number of glutamatergic inputs, but the full complement of these has yet to be established. The aim of these Studies was to define characteristics of the different glutamatergic afferent inputs to the nucleus accumbens that would aid their identification. To enable the characterisation of the glutamatergic inputs to nucleus accumbens neurons we first labelled the four main glutamatergic sources of afferent input to the accumbens with the anterograde tracer biotinylated dextran amine (BDA). Using an unbiased systematic sampling method, the morphological characteristics of their synaptic boutons were measured and assessed at the electron microscopic level. From the criteria assessed, a comparison of the four afferent sources was made, characteristics such as bouton size and vesicle density had significantly different population means, however, the only characteristic that allowed discrimination between the four major glutamatergic afferent to the nucleus accumbens was that of vesicle size. The vesicles in boutons from amygdala were larger than the subiculum which, in turn, were larger than the prefrontal cortex, the thalamus were the smallest in size. The methods used also allow a comparison of the relative frequency of different sized postsynaptic structures targeted, the prefrontal cortex almost exclusively targeted spines whereas the thalamus and the subiculum, in addition to spines, targeted proximal and distal dendrites. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据