4.7 Article

Symmetry breaking leads to forward flapping flight

期刊

JOURNAL OF FLUID MECHANICS
卷 506, 期 -, 页码 147-155

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112004008468

关键词

-

向作者/读者索取更多资源

Flapping flight is ubiquitous in Nature, yet cilia and flagella, not wings, prevail in the world of micro-organisms. This paper addresses this dichotomy. We investigate experimentally the dynamics of a wing, flapped up and down and free to move horizontally. The wing begins to move forward spontaneously as a critical frequency is exceeded, indicating that 'flapping flight' occurs as a symmetry-breaking bifurcation from a pure flapping state with no horizontal motion. A dimensionless parameter, the Reynolds number based on the flapping frequency, characterizes the point of bifurcation. Above this bifurcation, we observe that the forward speed increases linearly with the flapping frequency. Visualization of the flow field around the heaving and plunging foil shows a symmetric pattern below transition. Above threshold, an inverted von Karman vortex street is observed in the wake of the wing. The results of our model experiment, namely the critical Reynolds number and the behaviour above threshold, are consistent with observations of the flapping-based locomotion of swimming and flying animals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据