4.8 Article

A PELDOR-based nanometer distance ruler for oligonucleotides

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 126, 期 18, 页码 5722-5729

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja0393877

关键词

-

向作者/读者索取更多资源

A pulsed electron paramagnetic resonance (EPR) spectroscopic ruler for oligonucleotides was developed using a series of duplex DNAs. The spin-labeling is accomplished during solid-phase synthesis of the oligonucleotides utilizing a palladium-catalyzed cross-coupling reaction between 5-iodo-2'-deoxyuridine and the rigid spin-label 2,2,5,5-tetramethyl-pyrrolin-1-yloxyl-3-acetylene (TPA). 4-Pulse electron double resonance (PELDOR) was then used to measure the intramolecular spin-spin distances via the dipolar coupling, yielding spin-spin distances of 19.2, 23.3, 34.7, 44.8, and 52.5 Angstrom. Employing a full-atom force field with explicit water, molecular dynamic (MD) simulations on the same spin-labeled oligonucleotides in their duplex B-form gave spin-spin distances of 19.6, 21.4, 33.0, 43.3, and 52.5 Angstrom, respectively, in very good agreement with the measured distances. This shows that the oligonucleotides adopt a B-form duplex structure also in frozen aqueous buffer solution. It also demonstrates that the combined use of site-directed spin-labeling, PELDOR experiments, and MD simulations can yield a microscopic picture about the overall structure of oligonucleotides. The technique is also applicable to more complex systems, like ribozymes or DNA/RNA-protein complexes, which are difficult to access by NMR or X-ray crystallography.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据