4.4 Article

Developmental and evolutionary aspects of the basic helix-loop-helix transcription factors Atonal-like 1 and Achaete-scute homolog 2 in the jellyfish

期刊

DEVELOPMENTAL BIOLOGY
卷 269, 期 2, 页码 331-345

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ydbio.2004.01.035

关键词

Achaete-scute; atonal; basic helix-loop-helix; Cnidaria; evolution; muscle; nerve; neuropeptide; Podocoryne carnea; transdifferentiation

向作者/读者索取更多资源

The close functional link of nerve and muscle cells in neuromuscular units has led to the hypothesis of a common evolutionary origin of both cell types. Jellyfish are well suited to evaluate this theory since they represent the most basal extant organisms featuring both striated muscle and a nervous system. Here we describe the structure and expression of two novel genes for basic helix-loop-helix (bHLH) transcription factors, the Achaete-scute B family member Ash2 and the Atonal-like gene Atl1, in the hydrozoan jellyfish Podocoryne carnea. Ash2 is expressed exclusively in larval and adult endoderm cells and may be involved in differentiation of secretory cells. Atl1 expression is more widespread and includes the developing striated muscle as well as mechanosensory and nerve cell precursors in the medusa tentacles. Moreover, Atl1 expression is upregulated in proliferating nerve cell precursors arising from adult striated muscle cells by transdifferentiation in vitro. Likewise, the neuronal marker gene NP coding for the RFamide neuropeptide is expressed not only in mature nerve cells but also transiently in the developing muscle. The molecular evidence is concurrent to the hypothesis that muscle and nerve cells are closely linked in evolution and derive from a common myoepithelial precursor. (C) 2004 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据