4.8 Article

A novel glucose ENFET based on the special reactivity of MnO2 nanoparticles

期刊

BIOSENSORS & BIOELECTRONICS
卷 19, 期 10, 页码 1295-1300

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2003.11.019

关键词

ENFET; glucose; MnO2 nanoparticles; biosensor

向作者/读者索取更多资源

Generally a glucose-sensitive enzyme field-effect transistor (ENFET) is based on local pH change in biomembranes resulted from the formation of gluconic acid. Here we proposed a glucose ENFET based on a new principle. The glucose ENFET was fabricated by coimmobilizing glucose oxidase (GOD) and Mno(2) nanoparticles on the gate of an ion-sensitive field-effect transistor (ISFET). The proposed glucose biosensor shows a significant local pH increase in the sensitive membrane with the increase of glucose concentration. The driving force of the pH change in our sensor is essentially different from all the other glucose ENFETs, including those prepared by bulk MnO2. The special reaction ability of MnO2 nanoparticles with hydrogen peroxide might be the main cause of the pH change. In addition, the influence of buffer concentration, pH and ionic strength on the glucose ENFET is investigated in detail. It is found that the ionic strength has little effect on the performance of the ENFET. Under optimal conditions, the proposed ENFET exhibits a linear response with glucose in the range of 0.025-1.90 mM, an extended dynamic upper limit of 3.5 nM glucose, and considerable good reproducibility and stability. (C) 2003 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据