4.8 Article

Effects of TiO2 surface modifications on photocatalytic oxidation of arsenite:: The role of superoxides

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 38, 期 10, 页码 2928-2933

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es034725p

关键词

-

向作者/读者索取更多资源

Using TiO2 photocatalyst, arsenite [As(III)] can be rapidly oxidized to arsenate [As(V)], which is less toxic and less mobile in the aquatic environment. Superoxides have been recently proposed as a main photocatalytic oxidant of As(III)whereas OH radicals are dominant oxidants in most TiO2 photocatalytic oxidation (PCO) reactions. This study confirms that superoxides are mainly responsible for the As(III) PCO by investigating PCO kinetics in pure and modified TiO2 systems. The rate of As(III) oxidation drastically increased on Pt-TiO2, which could be ascribed to the enhanced superoxide generation through an efficient interfacial electron transfer from the conduction band (CB) to O-2. Since the addition of tert-butyl alcohol (OH radical scavenger) had little effect on the PCO rate in both naked and Pt-TiO2 suspensions, OH radicals do not seem to be involved. The addition of polyoxometalates (POMs) as an electron shuttle between TiO2 CB and O-2 highly promoted the PCO rate whereas the POM alone was not effective at all in oxidizing As(III). Fluorinated TiO2 that had a markedly reduced adsorptive capacity for As(III) did not show a reduced PCO rate, which indicates that the direct hole transfer path is not important. The arsenite oxidation proceeded under visible light with a similar rate to the case of Pt-TiO2/UV when dye-sensitized Pt-TiO2 was used. Since only superoxides can be generated as a photooxiclant in this visible light system, their role as a main oxidant of As(III) is confirmed. In addition, the PCO rate was significantly reduced in the presence of superoxide dismutase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据