4.8 Article

Differential metabolic networks unravel the effects of silent plant phenotypes

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0303415101

关键词

metabolomics; metabonomics; data mining; regulatory networks; functional genomics

向作者/读者索取更多资源

Current efforts aim to functionally characterize each gene in model plants. Frequently, however, no morphological or biochemical phenotype can be ascribed for antisense or knock-out plant genotypes. This is especially the case when gene suppression or knockout is targeted to isoenzymes or gene families. Consequently, pleiotropic effects and gene redundancy are responsible for phenotype resistance. Here, techniques are presented to detect unexpected pleiotropic changes in such instances despite very subtle changes in overall metabolism. The method consists of the relative quantitation of >1,000 compounds by GC/time-of-flight MS, followed by classical statistics and multivariate clustering. Complementary to these tools, metabolic networks are constructed from pair-wise analysis of linear metabolic correlations. The topology of such networks reflects the underlying regulatory pathway structure. A differential analysis of network connectivity was applied for a silent potato plant line suppressed in expression of sucrose synthase isoform II. Metabolic alterations could be assigned to carbohydrate and amino acid metabolism even if no difference in average metabolite levels was found.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据