4.8 Article

Poly(ether-anhydride) dry powder aerosols for sustained drug delivery in the lungs

期刊

JOURNAL OF CONTROLLED RELEASE
卷 96, 期 3, 页码 411-423

出版社

ELSEVIER
DOI: 10.1016/j.jconrel.2004.02.018

关键词

acrosolization; microparticle; lung; drug delivery; polymers; surface properties; PEG

向作者/读者索取更多资源

A new family of biodegradable ether-anhydride polymers was used to develop microparticles capable of controlled drug release and inhalation as a dry powder. The polymers are composed of various ratios of sebacic acid (SA) (to render the polymer insoluble in water) and poly(ethylene glycol) (PEG) (to reduce particle clearance by macrophages and improve aerosolization). Particle aerodynamic diameter was controlled within the respirable range by producing geometrically large, but low density particles as a first step toward reducing particle adhesion forces that limit efficient aerosolization of dry powders. Particles made from a variety of polymer compositions possessed high emitted doses (>80%) from a Spinhaler dry powder inhaler (DPI). Control over particle surface and bulk properties (surface roughness, surface charge, density and water retention) was achieved by varying the percentage of PEG in the polymer backbone. The addition of 10% PEG into the polymer backbone significantly enhanced deposition in the lower stages of an in vitro lung model following aerosolization from the DPI (fine particle fractions [FPF] reached 30%). Efficient aerosolization from an obsolete DPI combined with the ability to evade phagocytic clearance and provide controlled release of various drug molecules make these particles promising for prolonged drug delivery in the lung. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据