4.7 Article

Modeling of drug release from partially coated matrices made of a high viscosity HPMC

期刊

INTERNATIONAL JOURNAL OF PHARMACEUTICS
卷 276, 期 1-2, 页码 107-114

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijpharm.2004.02.016

关键词

modeling; hydroxypropyl methylcellulose (HPMC); hydrophilic matrix; release mechanism

向作者/读者索取更多资源

A mathematical model able to describe the release kinetics of two model drugs (Diprophylline and Theophylline) from partially coated hydroxypropylmethylcellulose (HPMC, Methocel((R)) K4M) matrices is presented. As solvent interaction with the system and drug release can only take place in one direction, the physical frame to be modeled turns out simpler. The model was developed starting from the established equation describing drug dissolution and taking into account the resistance to drug release given by the presence of a growing gel barrier around a matrix system. The model fits the release data obtained from both series of hydrophilic matrices containing increasing amounts (from 0.2 to 0.8 mass ratio) of the two xanthine derivatives. Differences were found in drug release rate according to the different solubility of the actives. Interestingly, however, there is no further reduction in the outer gel layer permeability when the polymer mass fraction exceeds a certain value, with both Theophylline and Diprophylline systems. Results confirm the importance of the fraction of the glassy/rubbery interface held by the active substance in defining the release rate from hydrophilic systems. (C) 2004 Elsevier B.V All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据