4.5 Article

Molecular dynamics study of tryptophylglycine: A dipeptide nanotube with confined water

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 108, 期 20, 页码 6458-6466

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp037219v

关键词

-

向作者/读者索取更多资源

To investigate the mechanism of structural changes of a peptide nanotube and water confined inside the channel, the helical peptide tryptophylglycine monohydrate (WG-H2O) was studied by molecular dynamics (MD) simulations using the three-dimension parallel MD program ddgmq (software package) and a consistent force field. Simulations were performed on both the water-containing system and a model system without water molecules. The details of the structural behavior with temperature are investigated for the entire simulated temperature range. Phase transitions were obtained at 115, 245, 270, 3 10, and 3 85 K, due to the contributions of both the peptide and the confined water subsystems. The crystalline, amorphous, liquidlike, liquid, and superheated phases of water were observed in the temperature ranges 40-115, 115-245, 245-310, 310385, and >385 K, respectively. At 300 K, the diffusion constant of the confined water is 0.46 x 10(-5) cm(2) s(-1), a value comparable to that of other peptide nanotubes. The empty peptide system melts at 440 K. Mechanisms of the negative thermal expansion (NTE) along the tube axis were investigated for different temperature ranges. The contraction of the crystalline water (or amorphous water) draws also the tube walls in and leads to NTE below 245 K. The other NTEs appear to be connected to the collapse of the ice network or the solid peptide network between 245 K and room temperature or from 310 to 440 K, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据