4.7 Article

Recognition of human mitochondrial tRNA Leu(UUR) by its cognate leucyl-tRNA synthetase

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 339, 期 1, 页码 17-29

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2004.03.066

关键词

footprinting; aminoacylation; RNA folding; transcripts

向作者/读者索取更多资源

Accuracy of protein synthesis depends on specific recognition and amino-acylation of tRNAs by their cognate aminoacyl-tRNA synthetases. Rules governing these processes have been established for numerous prokaryotic and eukaryotic cytoplasmic systems, but only limited information is available for human mitochondrial systems. It has been shown that the in vitro transcribed human mitochondrial tRNA(Leu(UUR)) does not fold into the expected cloverleaf, but is however aminoacylated by the human mitochondrial leucyl-tRNA synthetase. Here, the role of the structure of the amino acid acceptor branch and the anticodon branch of tRNA(Leu(UUR)) in recognition by leucyl-tRNA synthetase was investigated. The kinetic parameters for aminoacylation of wild-type and mutant tRNA(LEU(UUR)) transcripts and of native tRNA(Leu(UUR)) were determined. Solution structure probing was performed in the presence or in the absence of leucyl-tRNA synthetase and correlated with the aminoacylation kinetics for each tRNA. Replacement of mismatches in either the anticodon-stern or D-stern that are present in the wild-type tRNA(Leu(UUR)) by G-C base-pairs is sufficient to induce (i) cloverleaf folding, (ii) improved aminoacylation efficiency, and (iii) interactions with the synthetase that are similar to those with the native tRNA(Leu(UUR)). Leucyl-tRNA synthetase contacts tRNA(Leu(UUR)) in the amino acid acceptor stem, the anticodon stem, and the D-loop, which is unprecedented for a leucine aminoacylation system. (C) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据