4.7 Article

Structural analysis of the human golgi-associated plant pathogenesis related protein GAPR-1 implicates dimerization as a regulatory mechanism

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 339, 期 1, 页码 173-183

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2004.03.015

关键词

plant pathogenesis related protein; PR-1; X-ray crystallography; yeast two-hybrid screening; quasi-elastic light-scattering

向作者/读者索取更多资源

The plant pathogenesis related proteins group 1 (PR-1) and a variety of related mammalian proteins constitute a PR-1 protein family that share sequence and structural similarities. GAPR-1 is a unique family member as thus far it is the only PR-1 family member that is not co-translationatly targeted to the lumen of the endoplasmic reticulum before trafficking to either vacuoles or secretion. Here we report that GAPR-1 may form dimers in vitro and in vivo, as determined by yeast two-hybrid screening, biochemical and biophysical assays. The 1.55 Angstrom crystal structure demonstrates that GAPR-1 is structurally homologous to the other PR-1 family members previously solved (p14a and Ves V 5). Through an examination of inter-molecular interactions between GAPR-1 molecules in the crystal lattice, we propose a number of the highly conserved amino acid residues of the PR-1 family to be involved in the regulation of dimer formation of GAPR-1 with potential implications for other PR-1 family members. We show that mutagenesis of these conserved amino acid residues leads to a greatly increased dimer population. A recent report suggests that PR-1 family members may exhibit serine protease activity and further examination of the dimer interface of GAPR-1 indicates that a catalytic triad similar to that of serine proteases may be formed across the dimer interface by residues from both molecules within the dimer. (C) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据