4.6 Article

Controlled changes in the microstructure and magnetic anisotropy in arrays of electrodeposited Co nanowires induced by the solution pH

期刊

JOURNAL OF PHYSICS D-APPLIED PHYSICS
卷 37, 期 10, 页码 1411-1416

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0022-3727/37/10/001

关键词

-

向作者/读者索取更多资源

The effects of the electrolytic bath acidity, or pH, on the magnetic properties in arrays of electrodeposited Co nanowires and their correlation with the crystalline properties have been studied using ferromagnetic resonance. The results show that, depending on the value of the pH of the electrolyte, appreciable changes in the effective anisotropy can be induced. These changes are attributed to modifications in the microstructure of the Co nanowires. In particular, quantification of the effective anisotropy field shows that the microstructure of the deposited Co wires can be set to contain a dominant fraction of the Co-hcp phase with the c-axis oriented perpendicular to the wires, for pH values of 3.8-4.0, or parallel to the wires, for pH values greater than or equal to6.0. This results in a competitive or additive magnetocrystalline contribution to the total anisotropy field. Furthermore, at a pH value of 2.0, no contribution from the magnetocrystalline anisotropy is present, indicating a lack of texture in the Co microstructure. As a result, the effective anisotropy can be controlled over a field range of 5 kOe.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据