4.4 Article

Co-regulation of mitochondrial respiration by proline dehydrogenase/oxidase and succinate

期刊

AMINO ACIDS
卷 48, 期 3, 页码 859-872

出版社

SPRINGER WIEN
DOI: 10.1007/s00726-015-2134-7

关键词

Respiration; Reactive oxygen species; Redox; Energetics; Signaling

资金

  1. Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research

向作者/读者索取更多资源

Proline dehydrogenase/oxidase (PRODH/POX) is a mitochondrial protein critical to multiple stress pathways. Because of the roles of PRODH/POX in signaling, and its shared localization to the mitochondrial inner membrane with the electron transport chain (ETC), we investigated whether there was a direct relationship between PRODH/POX and regulation of the ETC. We found that PRODH/POX binds directly to CoQ1 and that CoQ1-dependent PRODH/POX activity required functional Complex III and Complex IV. PRODH/POX supported respiration in living cells during nutrient stress; however, expression of PRODH/POX resulted in an overall decrease in respiratory fitness. Effects on respiratory fitness were inhibited by DHP and NAC, indicating that these effects were mediated by PRODH/POX-dependent reactive oxygen species (ROS) generation. PRODH/POX expression resulted in a dose-dependent down-regulation of Complexes I-IV of the ETC, and this effect was also mitigated by the addition of DHP and NAC. We found that succinate was an uncompetitive inhibitor of PRODH/POX activity, inhibited ROS generation by PRODH/POX, and alleviated PRODH/POX effects on respiratory fitness. The findings demonstrate novel cross-talk between proline and succinate respiration in vivo and provide mechanistic insights into observations from previous animal studies. Our results suggest a potential regulatory loop between PRODH/POX and succinate in regulation of mitochondrial respiration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据