4.6 Article

Thermal conductivity improvement of silicone elastomer with carbon nanotube loading

期刊

APPLIED PHYSICS LETTERS
卷 84, 期 21, 页码 4248-4250

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1756680

关键词

-

向作者/读者索取更多资源

Unpurified carbon nanotubes were introduced to silicone elastomer to investigate their effect on the thermal conductivity. Microstructure studies by a scanning electron microscope showed that the carbon nanotubes (CNTs) can be well dispersed in the matrix by the grinding method. No notable agglomerates or phase separation between the carbon and silicone matrix were observed, and the CNTs were individually in random orientation. The thermal conductivities of the composites were measured with the ASTM (American Society of Testing Materials) D5470 method. The thermal conductivities kappa were found to increase with the carbon amount. There was a 65% enhancement in kappa with 3.8 wt % CNT loading. The enhancement by equal loading of carbon black was found to be a little lower than that by the CNT loading. The composites loaded with CNTs displayed an abrupt increase in the electrical conductivity. (C) 2004 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据