4.7 Article

Rethinking satellite-based solar irradiance modelling - The SOLIS clear-sky module

期刊

REMOTE SENSING OF ENVIRONMENT
卷 91, 期 2, 页码 160-174

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2004.02.009

关键词

solar irradiance modelling; remote sensing

向作者/读者索取更多资源

Accurate solar irradiance data are not only of particular importance for the assessment of the radiative forcing of the climate system, but also absolutely necessary for efficient planning and operation of solar energy systems. Within the European project Heliosat-3, a new type of solar irradiance scheme is developed. This new type will be based on radiative transfer models (RTM) using atmospheric parameter information retrieved from the Meteosat Second Generation (MSG) satellite (Clouds, ozone, water vapour) and the ERS-2/ENVISAT satellites (aerosols, ozone). This paper focuses on the description of the clear-sky module of the new scheme, especially on the integrated use of a radiative transfer model. The linkage of the clear-sky module with the cloud module is also briefly described in order to point out the benefits of the integrated RTM use for the all-sky situations. The integrated rise of an RTM within the new Solar Irradiance Scheme SOLIS is applied by introducing a new fitting function called the modified Lambert-Beer (MLB) relation. Consequently, the modified Lambert-Beer relation and its role for an integrated RTM use are discussed. Comparisons of the calculated clear-sky irradiances with ground-based measurements and the current clear-sky module demonstrate the advantages and benefits of SOLIS. Since SOLIS can provide spectrally resolved irradiance data, it can be used for different applications. Beside improved information for the planning of solar energy systems, the calculation of photosynthetic active radiation, UV index, and illuminance is possible. (C) 2004 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据