4.6 Article

Ligand-induced expression of peroxisome proliferator-activated receptor α and activation of fatty acid oxidation enzymes in fatty liver

期刊

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION
卷 34, 期 6, 页码 429-435

出版社

WILEY
DOI: 10.1111/j.1365-2362.2004.01359.x

关键词

fatty liver; mitochondrial beta-oxidation; oxidative injury; peroxisomal beta-oxidation; PPAR alpha

向作者/读者索取更多资源

Background Peroxisome proliferator-activated receptor alpha (PPARalpha) regulates lipid metabolism upon activation by ligands. Peroxisome proliferator-activated receptor alpha may play a role in the pathogenesis of fatty liver disease. The aim of this study was to assess the PPARalpha expression pattern and mitochondrial/peroxisomal enzyme activities in response to high fat diet (HFD) and clofibrate, a well known PPARalpha ligand. Materials and methods Four groups of Wistar-Albino rats were included: (1) rats fed a control diet (CD) for 6 weeks, (2) rats fed CD (6 weeks) plus clofibrate (last 2 weeks), (3) rats fed HFD for 6 weeks, and (4) rats fed HFD (6 weeks) plus clofibrate (last 2 weeks). Peroxisome proliferator-activated receptor alpha expression was evaluated by immunohistochemistry. Fatty acid beta-oxidation (peroxisomal-acyl-CoA-oxidase and mitochondrial-acyl-CoA-dehydrogenase) and catalase enzyme activities, and malondialdehyde and glutathion levels were measured spectrophotometrically in liver tissues. Results All animals were fed HFD but only 2/12 animals were fed HFD plus clofibrate-developed fatty liver. Both HFD and clofibrate induced PPARalpha expression, clofibrate induction being more prominent than HFD. Clofibrate plus HFD did not further increase PPARalpha expression. Activities of peroxisomal-acyl-CoA-oxidase and mitochondrial-acyl-CoA-dehydrogenase enzymes were not induced by HFD alone. Clofibrate increased the activity of these enzymes in both CD- and HFD-fed animals. However, an increase of acyl-CoA-oxidase activity was blunted in rats fed HFD. Catalase activity and malondialdehyde levels were increased but glutathion levels were unchanged in rats fed HFD plus clofibrate. Conclusions Clofibrate was a more potent inducer of PPARalpha expression than HFD in our rat fatty liver model. The finding of blunted peroxisomal enzyme response to clofibrate in fatty livers suggests that alterations in postreceptor events may exist and further contribute to liver steatosis. Clofibrate seems to stabilize glutathion content and this might contribute to the prevention of liver steatosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据