4.5 Article

Development and field validation of a biotic ligand model predicting chronic copper toxicity to Daphnia magna

期刊

ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY
卷 23, 期 6, 页码 1365-1375

出版社

SETAC
DOI: 10.1897/02-626

关键词

bioavailability; metals; biotic ligand model; Daphnia magna; copper

向作者/读者索取更多资源

In this Study, we developed a toxicity model predicting the long-term effects of copper on the reproduction of the clactoceran Daphnia magna that is based on previously reported toxicity tests in 35 exposure media with different water chemistries. First, it was demonstrated that the acute copper biotic ligand model (BLM) for D. magna could not serve its a reliable basis for predicting chronic copper toxicity. Consequently, BLM constants for chronic exposures were derived by multiple regression analysis of 21-d median effective concentrations (EC50s; expressed as Cu2+ activity) versus physicochemistry from a large toxicity dataset and the results of an additional experiment in which the individual effect of sodium on copper toxicity was investigated. The effect of sodium on chronic toxicity (log K-NaBL = 2.91) seemed to be similar to its effect on acute toxicity (log K-NaBL= 3.19). However, in contrast to the acute BLM, no significant calcium, magnesium, or combined competition effect was observed, and an increase in proton competition and bioavailability of CuOH+ and CuCO3 complexes was noted. Some indirect evidence was also found for some limited toxicity of complexes of copper with two of three tested types of dissolved organic matter. Because the latter was only a minor effect, this factor was not included in the chronic Cu BLM. The newly developed model performed well in predicting 21-d EC50s and no-observed-effect concentrations in natural water samples: 79% of the toxicity threshold values were predicted within a factor of two of the observed values. It is clear, however, that more research is needed to provide information on the exact mechanisms that have resulted in different BLM constants for chronic exposures (as opposed to acute exposures). It is suggested that the developed model can contribute to the improvement of risk assessment procedures of copper by incorporating bioavailability of copper in these regulatory exercises.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据