4.7 Article

Oxidation of bisphenol A, 17β-estradiol, and 17α-ethynyl estradiol and byproduct estrogenicity

期刊

ENVIRONMENTAL TOXICOLOGY
卷 19, 期 3, 页码 257-264

出版社

WILEY
DOI: 10.1002/tox.20018

关键词

E-screen; bisphenol A; 17 beta-estradiol; 17 alpha-ethynyl estradiol; chlorination; ozonation; estrogenicity

向作者/读者索取更多资源

A human breast cancer cell line (MCF-7) was used to investigate the cumulative estrogenicity profiles elicited during the oxidation of three estrogenic compounds [bisphenol A (BPA), 17beta-estradiol (E2), and 17alpha-ethynyl estradiol (EE2)]. High-performance liquid chromatography (HPLC) with a method detection limit (MDL) of similar to1 nM was used to measure the initial and final concentrations of test compounds during oxidation. Both chlorination and ozonation removed from 75% to >99% of the test compounds in distilled water. Increasing contact time and chlorination dose improved compound removal. Chlorination byproducts of BPA, E2, and EE2 elicited low levels of estrogenicity over an extended period of time. For equivalent molar oxidant dosages, ozone and chlorine had comparable residual proliferative effect values and >99% loss of the parent compounds. For oxidation studies of estrogenic chemicals, ammonium chloride was found to adequately quench residual chlorine without interfering with cell culture assay. Oxidation of test compounds with chlorine and ozone resulted in a similar estrogenicity trend, with a relative higher level of estrogenicity elicited during the early phases of oxidation, which gradually dissipated over the extended exposure time to a stable point. Oxidation with ozone resulted in the rapid transformation of test compounds, reaching a stabilized estrogenic level in 10 min, whereas for chlorination it took more than 120 min for elicited estrogenicity to stabilize. (C) 2004 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据