4.6 Article

Modelling plant responses to elevated CO2:: How important is leaf area index?

期刊

ANNALS OF BOTANY
卷 93, 期 6, 页码 619-627

出版社

OXFORD UNIV PRESS
DOI: 10.1093/aob/mch101

关键词

elevated CO2; leaf area index; modelling; photosynthesis; plant growth; scaling

向作者/读者索取更多资源

Background and Aims The problem of increasing CO2 concentration [CO2] and associated climate change has [CO2] on plants. While variation in growth and productivity is generated much interest in modelling effects of closely related to the amount of intercepted radiation, largely determined by leaf area index (LAI), effects of elevated [CO2] on growth are primarily via stimulation of leaf photosynthesis. Variability in LAI depends on climatic and growing conditions including [CO2] concentration and can be high, as is known for agricultural crops which are specifically emphasized in this report. However, modelling photosynthesis has received much attention and photosynthesis is often represented inadequately detailed in plant productivity models. Less emphasis has been placed on the modelling of leaf area dynamics, and relationships between plant growth, elevated [CO2] and LAI are not well understood. This Botanical Briefing aims at clarifying the relative importance of LAI for canopy assimilation and growth in biomass under conditions of rising [CO2] and discusses related implications for process-based modelling. Model A simulation exercise performed for a wheat crop demonstrates recent experimental findings about canopy assimilation as affected by LAI and elevation of [CO2]. While canopy assimilation largely increases with LAI below canopy light saturation, effects on canopy assimilation of [CO2] elevation are less pronounced and tend to decline as LAI increases. Results from selected model-testing studies indicate that simulation of LAI is often critical and forms an important source of uncertainty in plant productivity models, particularly under conditions of limited resource supply. Conclusions Progress in estimating plant growth and productivity under rising [CO2] is unlikely to be achieved without improving the modelling of LAI. This will depend on better understanding of the processes of substrate allocation, leaf area development and senescence, and the role of LAI in controlling plant adaptation to environmental changes. (C) 2004 Annals of Botany Company.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据