4.6 Article

Conductance of molecular wires and transport calculations based on density-functional theory

期刊

PHYSICAL REVIEW B
卷 69, 期 23, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.69.235411

关键词

-

向作者/读者索取更多资源

The experimental value for the zero bias conductance of organic molecules coupled by thiol-groups to gold electrodes tends to be much smaller than the theoretical result based on density functional theory (DFT) calculations, often by orders of magnitude. To address this puzzle we have analyzed the regime within which the approximations made in these calculations are valid. Our results suggest that a standard step in DFT based transport calculations, namely approximating the exchange-correlation potential in quasistatic nonequilibrium by its standard equilibrium expression, is not justified at weak coupling. We propose, that the breakdown of this approximation is the most important source for overestimating the width of the experimentally observed conductance peak and therefore also of the zero bias conductance. We present a numerical study on the conductance of an organic molecule that has recently been studied in experiments that fully agrees with this conclusion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据