4.7 Article Proceedings Paper

Electron transfer kinetics in photosynthetic reaction centers embedded in polyvinyl alcohol films

期刊

BIOELECTROCHEMISTRY
卷 63, 期 1-2, 页码 73-77

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.bioelechem.2003.09.015

关键词

photosynthetic reaction center; polyvinyl alcohol film; protein dynamics; conformational relaxation

向作者/读者索取更多资源

The coupling between electron transfer and protein dynamics has been studied at room temperature in isolated reaction centers (RCs) from the photosynthetic bacterium Rhodobacter sphaeroides by incorporating the protein in polyvinyl alcohol (PVA) films of different water/RC ratios. The kinetic analysis of charge recombination shows that dehydration of RC-containing PVA films causes reversible, inhomogeneous inhibition of electron transfer from the reduced primary quinone acceptor (Q(A)(-)) to the secondary quinone Q(B). A more extensive dehydration of solid PVA matrices accelerates electron transfer from Q(A)(-) to the primary photooxidized electron donor P+. These effects indicate that incorporation of RCs into dehydrated PVA films hinders the conformational dynamics gating Q(A)(-) to Q(B) electron transfer at room temperature and slows down protein relaxation which stabilizes the primary charge-separated state P(+)Q(A)(-). A comparison with analogous effects observed in trehalose-coated RCs suggests that protein motions are less severely reduced in PVA films than in trehalose matrices at comparable water/RC ratios. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据