4.6 Article

Atomistic study of intrinsic defect migration in 3C-SiC

期刊

PHYSICAL REVIEW B
卷 69, 期 24, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.69.245205

关键词

-

向作者/读者索取更多资源

Atomic-scale computer simulations, both molecular dynamics (MD) and the nudged-elastic band methods, have been applied to investigate long-range migration of point defects in cubic SiC (3C-SiC) over the temperature range from 0.36T(m) to 0.95T(m) (melting temperature). The point defect diffusivities, activation energies, and defect correlation factors have been obtained. Stable C split interstitials can migrate via the first- or second-nearest-neighbor sites, but the relative probability for the latter mechanism is very low. Si interstitials migrate directly from one tetrahedral position to another neighboring equivalent position by a kick-in/kick-out process via a split-interstitial configuration. Both C and Si vacancies jump to one of their equivalent sites through a direct migration mechanism. The migration barriers obtained for C and Si interstitials are consistent with the activation energies observed experimentally for two distinct recovery stages in irradiated SiC. Also, energy barriers for C interstitial and vacancy diffusion are in reasonable agreement with ab initio data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据