4.6 Article

Formation and electronic properties of BC3 single-wall nanotubes upon boron substitution of carbon nanotubes -: art. no. 245403

期刊

PHYSICAL REVIEW B
卷 69, 期 24, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.69.245403

关键词

-

向作者/读者索取更多资源

We report a detailed experimental and theoretical study on the electronic and optical properties of highly boron-substituted (up to 15 at.%) single-wall carbon nanotubes. Core-level electron energy-loss spectroscopy reveals that the boron incorporates into the lattice structure of the tubes, transferring similar to1/2 hole per boron atom into the carbon derived unoccupied density of states. The charge transfer and the calculated Fermi-energy shift in the doped nanotubes evidence that a simple rigid-band model can be ruled out and that additional effects such as charge localization and doping induced band-structure changes play an important role at this high doping levels. In optical absorption a new peak appears at 0.4 eV which is independent of the doping level. Compared to the results from a series of ab initio calculations our results support the selective doping of semiconducting nanotubes and the formation of BC3 nanotubes instead of a homogeneous random boron substitution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据