4.5 Article

Minocycline delays photoreceptor death in the rds mouse through a microglia-independent mechanism

期刊

EXPERIMENTAL EYE RESEARCH
卷 78, 期 6, 页码 1077-1084

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.exer.2004.02.002

关键词

minocycline; microglia; photoreceptor; apoptosis; clodronate liposomes; rds; capase

向作者/读者索取更多资源

Purpose. Minocycline, a semi-synthetic tetracycline antibiotic is reported to be neuroprotective in degenerative and ischaemic models of central nervous system disease, via mechanisms involving suppression of both cytotoxic microglial activity and caspase-dependent apoptosis. We have investigated the effect of minocycline treatment on a mouse model of retinitis pigmentosa, an inherited photoreceptor neurodegenerative disorder, and contrasted this with the effect of depleting retinal microglia using liposomal clodronate. Methods. rds mice were treated intraperitoneally from the second postnatal day (P2) with either daily minocycline until P16, P18, P21, P24 and P27 or alternative day clodronate liposomes until P16. Immunohistochemical and immunofluorescent methods were applied for the detection of microglia (F4/80) and apoptosis (TUNEL and caspase 3 activation). Results. Photoreceptor apoptosis was delayed by minocycline treatment but not, ultimately, prevented. Markedly reduced expression of activated caspase 3 was observed in photoreceptors at the early time point, corresponding with the reduced level of apoptosis. Delayed photoreceptor apoptosis due to minocycline treatment was associated with a 50% reduction in the numbers of microglia at early timepoints. Liposomal clodronate treatment also resulted in a marked reduction in the number of microglia (63% reduction in microglia), but in contrast to minocycline treatment, this had no effect on photoreceptor apoptosis. Conclusions. Minocycline appears to delay photoreceptor apoptosis through a microglia-independent action. Although microglial cytotoxicity has been implicated during other models of neurodegeneration, microglia are unlikely to play such a role in this model of photoreceptor dystrophy. (C) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据