4.8 Article

Global analysis of predicted proteomes: Functional adaptation of physical properties

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0307270101

关键词

-

向作者/读者索取更多资源

The physical characteristics of proteins are fundamentally important in organismal function. We used the complete predicted proteomes of >100 organisms spanning the three domains of life to investigate the comparative biology and evolution of proteomes. Theoretical 2D gels were constructed with axes of protein mass and charge (p1) and converted to density estimates comparable across all types and sizes of proteome. We asked whether we could detect general patterns of proteome conservation and variation. The overall pattern of theoretical 2D gels was strongly conserved across all life forms. Nevertheless, coevolved replicons from the same organism (different chromosomes or plasmid and host chromosomes) encode proteomes more similar to each other than those from different organisms. Furthermore, there was disparity between the membrane and nonmembrane subproteomes within organisms (proteins of membrane proteomes are on the average more basic and heavier) and their variation across organisms, suggesting that membrane proteomes evolve most rapidly. Experimentally, a significant positive relationship independent of phylogeny was found between the predicted proteome and Biolog profile, a measure associated with the ecological niche. Finally, we show that, for the smallest and most alkaline proteomes, there is a negative relationship between proteome size and basicity. This relationship is not adequately explained by AT bias at the DNA sequence level. Together, these data provide evidence of functional adaptation in the properties of complete proteomes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据