4.4 Article

An integrated multiphase flow sensor for microchannels

期刊

EXPERIMENTS IN FLUIDS
卷 36, 期 6, 页码 819-832

出版社

SPRINGER
DOI: 10.1007/s00348-003-0764-0

关键词

-

向作者/读者索取更多资源

The flow regimes of microscale multiphase flows affect the yield and selectivity of microchemical systems, and the heat transfer properties of micro heat exchangers. We describe an integrated optical sensor that uses total internal reflection to detect the structure of multiphase flows in microchannels. The non-intrusive sensor enables detection of individual slugs, bubbles, or drops, and can be used to continuously determine their number and velocity. The sensor performance is modeled using ray-tracing techniques, and tested for several channel geometries. Both gas-liquid and liquid-liquid flows are investigated in microchannels with rectangular and triangular cross-sections. Statistical properties of the flow, derived from the sensor signal, compare favorably to commonly-used dynamic pressure measurements. We demonstrate the integration of the sensor into a planar multichannel microreactor. An existing glass layer used as a waveguide allows us to monitor flows in optically inaccessible channels. This sensor configuration can be integrated into layers of vertically-stacked multichannel microreactors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据