4.7 Article

An integrative biology approach for analysis of drug action in models of human vascular inflammation

期刊

FASEB JOURNAL
卷 18, 期 9, 页码 1279-+

出版社

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.04-1538fje

关键词

endothelium; leukocyte; chemokine; adhesion; systems biology

资金

  1. NIAID NIH HHS [R43 AI049048, R43 AI048255] Funding Source: Medline

向作者/读者索取更多资源

Unexpected drug activities discovered during clinical testing establish the need for better characterization of compounds in human disease-relevant conditions early in the discovery process. Here, we describe an approach to characterize drug function based on statistical analysis of protein expression datasets from multiple primary human cell-based models of inflammatory disease. This approach, termed Biologically Multiplexed Activity Profiling (BioMAP), provides rapid characterization of drug function, including mechanism of action, secondary or off-target activities, and insights into clinical phenomena. Using three model systems containing primary human endothelial cells and peripheral blood mononuclear cells in different environments relevant to vascular inflammation and immune activation, we show that BioMAP profiles detect and discriminate multiple functional drug classes, including glucocorticoids; TNF-alpha antagonists; and inhibitors of HMG-CoA reductase, calcineurin, IMPDH, PDE4, PI-3 kinase, hsp90, and p38 MAPK, among others. The ability of cholesterol lowering HMG-CoA reductase inhibitors (statins) to improve outcomes in rheumatic disease patients correlates with the activities of these compounds in our BioMAP assays. In addition, the activity profiles identified for the immunosuppressants mycophenolic acid, cyclosporin A, and FK-506 provide a potential explanation for a reduced incidence of posttransplant cardiovascular disease in patients receiving mycophenolic acid. BioMAP profiling can allow integration of meaningful human biology into drug development programs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据