4.6 Article

High-conductance states in a mean-field cortical network model

期刊

NEUROCOMPUTING
卷 58, 期 -, 页码 935-940

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.neucom.2004.01.149

关键词

synaptic conductances; response variability; cortical dynamics

向作者/读者索取更多资源

Measured responses from visual cortical neurons show that spike times tend to be correlated rather than exactly Poisson distributed. Fano factors vary and are usually greater than 1, indicating a tendency toward spikes being clustered. We show that this behavior emerges naturally in a balanced cortical network model with random connectivity and conductance-based synapses. We employ mean-field theory with correctly colored noise to describe temporal correlations in the neuronal activity. Our results illuminate the connection between two independent experimental findings: high-conductance states of cortical neurons in their natural environment, and variable non-Poissonian spike statistics with Fano factors greater than 1. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据